Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 145
Filter
1.
Int J Mol Sci ; 24(11)2023 May 24.
Article in English | MEDLINE | ID: covidwho-20241072

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic has caused more than six million deaths worldwide since 2019. Although vaccines are available, novel variants of coronavirus are expected to appear continuously, and there is a need for a more effective remedy for coronavirus disease. In this report, we isolated eupatin from Inula japonica flowers and showed that it inhibits the coronavirus 3 chymotrypsin-like (3CL) protease as well as viral replication. We showed that eupatin treatment inhibits SARS-CoV-2 3CL-protease, and computational modeling demonstrated that it interacts with key residues of 3CL-protease. Further, the treatment decreased the number of plaques formed by human coronavirus OC43 (HCoV-OC43) infection and decreased viral protein and RNA levels in the media. These results indicate that eupatin inhibits coronavirus replication.


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , Peptide Hydrolases , Protease Inhibitors/pharmacology , Protease Inhibitors/chemistry , Flavonoids/pharmacology , Endopeptidases , Antiviral Agents/pharmacology
2.
Front Cell Infect Microbiol ; 13: 1134802, 2023.
Article in English | MEDLINE | ID: covidwho-20239332

ABSTRACT

There has been progressive improvement in immunoinformatics approaches for epitope-based peptide design. Computational-based immune-informatics approaches were applied to identify the epitopes of SARS-CoV-2 to develop vaccines. The accessibility of the SARS-CoV-2 protein surface was analyzed, and hexa-peptide sequences (KTPKYK) were observed having a maximum score of 8.254, located between amino acids 97 and 102, whereas the FSVLAC at amino acids 112 to 117 showed the lowest score of 0.114. The surface flexibility of the target protein ranged from 0.864 to 1.099 having amino acid ranges of 159 to 165 and 118 to 124, respectively, harboring the FCYMHHM and YNGSPSG hepta-peptide sequences. The surface flexibility was predicted, and a 0.864 score was observed from amino acids 159 to 165 with the hepta-peptide (FCYMHHM) sequence. Moreover, the highest score of 1.099 was observed between amino acids 118 and 124 against YNGSPSG. B-cell epitopes and cytotoxic T-lymphocyte (CTL) epitopes were also identified against SARS-CoV-2. In molecular docking analyses, -0.54 to -26.21 kcal/mol global energy was observed against the selected CTL epitopes, exhibiting binding solid energies of -3.33 to -26.36 kcal/mol. Based on optimization, eight epitopes (SEDMLNPNY, GSVGFNIDY, LLEDEFTPF, DYDCVSFCY, GTDLEGNFY, QTFSVLACY, TVNVLAWLY, and TANPKTPKY) showed reliable findings. The study calculated the associated HLA alleles with MHC-I and MHC-II and found that MHC-I epitopes had higher population coverage (0.9019% and 0.5639%) than MHC-II epitopes, which ranged from 58.49% to 34.71% in Italy and China, respectively. The CTL epitopes were docked with antigenic sites and analyzed with MHC-I HLA protein. In addition, virtual screening was conducted using the ZINC database library, which contained 3,447 compounds. The 10 top-ranked scrutinized molecules (ZINC222731806, ZINC077293241, ZINC014880001, ZINC003830427, ZINC030731133, ZINC003932831, ZINC003816514, ZINC004245650, ZINC000057255, and ZINC011592639) exhibited the least binding energy (-8.8 to -7.5 kcal/mol). The molecular dynamics (MD) and immune simulation data suggest that these epitopes could be used to design an effective SARS-CoV-2 vaccine in the form of a peptide-based vaccine. Our identified CTL epitopes have the potential to inhibit SARS-CoV-2 replication.


Subject(s)
COVID-19 , Viral Vaccines , Humans , SARS-CoV-2 , COVID-19 Vaccines , COVID-19/prevention & control , Molecular Docking Simulation , Epitopes, T-Lymphocyte , Epitopes, B-Lymphocyte , Peptides , Vaccines, Subunit , Amino Acids , Endopeptidases , Computational Biology
3.
Polycyclic Aromatic Compounds ; : 1-24, 2023.
Article in English | Academic Search Complete | ID: covidwho-2321942

ABSTRACT

Imine derivatives are widely used in medicine for the treatment of several diseases causing human infections;we examined Schiff's bases derivatives: 2-[(3-methylphenyl) azomethine] phenol (L1), 2-[(3-chlorophenyl) azomethine] phenol (L2) and 2-[(3-nitrophenyl) azomethine] phenol (L3) against three human pathogenic bacterial strains according to the disk diffusion test. In addition, to revealing the importances of the in silico study of these derivatives, in particular the molecular docking which is based on the protein structures: the main protease 3CL of SARS-CoV-2 and the aminopeptidase of the M1 family. Also, a molecular dynamics simulation was performed to examine the structural stability of the best docked conformation. The evaluation of the global reactivity parameters of the molecular system of Schiff base derivatives was applied by the DFT method with the hybrid functional (B3LYP)/6-31G (d) basis set. The results of the antibacterial activity showed a strong activity in the presence of the L3 ligand against Escherichia coli (ATCC 25922) with a diameter inhibition zone equal to 11 ± 0.61 mm. Molecular docking shows that the L3 ligand formed with protein targets more stable complexes by predicting interesting interactions: hydrogen, hydrophobic and electrostatic bonds with the residues of these targets 3CLpro and PfA-M1. Further, molecular dynamics simulations confirm a strong energy contribution with these interactions. Therefore, suggesting that our ligands could contribute to the development of anti-coronavirus-2 and anti-malarial drug properties. [ FROM AUTHOR] Copyright of Polycyclic Aromatic Compounds is the property of Taylor & Francis Ltd and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full . (Copyright applies to all s.)

4.
Eur J Med Chem ; 257: 115512, 2023 Sep 05.
Article in English | MEDLINE | ID: covidwho-2327200

ABSTRACT

A series of peptidomimetic compounds containing benzothiazolyl ketone and [2.2.1] azabicyclic ring was designed, synthesized and evaluated in the hope of obtaining potent oral 3CLpro inhibitors with improved pharmacokinetic properties. Among the target compounds, 11b had the best enzymatic potency (IC50 = 0.110 µM) and 11e had the best microsomal stability (t1/2 > 120 min) and good enzyme activity (IC50 = 0.868 µM). Therefore, compounds 11b and 11e were chosen for further evaluation of pharmacokinetics in ICR mice. The results exhibited that the AUC(0-t) of 11e was 5143 h*ng/mL following single-dose oral administration of 20 mg/kg, and the F was 67.98%. Further structural modification was made to obtain compounds 11g-11j based on 11e. Among them, 11j exhibited the best enzyme inhibition activity against SARS-CoV-2 3CLpro (IC50 = 1.646 µM), the AUC(0-t) was 32473 h*ng/mL (20 mg/kg, po), and the F was 48.1%. In addition, 11j displayed significant anti-SARS-CoV-2 activity (EC50 = 0.18 µM) and low cytotoxicity (CC50 > 50 µM) in Vero E6 cells. All of the above results suggested that compound 11j was a promising lead compound in the development of oral 3CLpro inhibitors and deserved further research.


Subject(s)
COVID-19 , Peptidomimetics , Animals , Mice , Peptidomimetics/pharmacology , Peptidomimetics/chemistry , SARS-CoV-2 , Protease Inhibitors/chemistry , Ketones , Mice, Inbred ICR , Antiviral Agents/chemistry
5.
Arab J Chem ; 16(9): 105001, 2023 Sep.
Article in English | MEDLINE | ID: covidwho-2327159

ABSTRACT

Both diabetes and Corona Virus Disease 2019 (COVID-19) are seriously harmful to human health, and they are closely related. It is of great significance to find drugs that can simultaneously treat diabetes and COVID-19. Based on the theory of traditional Chinese medicine for treating COVID-19, this study first sorted out the compounds of Guizhou Miao medicine with "return to the lung channel" and "clear heat and detoxify" effects in China. The active components against COVID-19 were screened by molecular docking with SARS-CoV-2 PLpro and angiotensin-converting enzyme II as targets. Furthermore, the common target dipeptidyl peptidase 4 (DPP4) of diabetes and COVID-19 was used as a screening protein, and molecular docking was used to obtain potential components for the treatment of diabetes and COVID-19. Finally, the mechanism of potential ingredients in the treatment of diabetes and COVID-19 was explored with bioinformatics. More than 80 kinds of Miao medicine were obtained, and 584 compounds were obtained. Further, 110 compounds against COVID-19 were screened, and top 6 potential ingredients for the treatment of diabetes and COVID-19 were screened, including 3-O-ß-D-Xylopyranosyl-(1-6)-ß-D-glucopyranosyl-(1-6)-ß-D-glucopyranosyl oleanolic acid 28-O-ß-D-glucopyranosyl ester, Glycyrrhizic acid, Sequoiaflavone, 2-O-Caffeoyl maslinic acid, Pholidotin, and Ambewelamide A. Bioinformatics analysis found that their mechanism of action in treating diabetes and COVID-19 may be related to regulating the expression of DPP4, angiotensin II type 1 receptor, vitamin D receptor, plasminogen, chemokine C-C-motif receptor 6, and interleukin 2. We believe that Guizhou Miao medicine is rich in potential ingredients for the treatment of diabetes and COVID-19.

6.
Chinese Journal of New Drugs ; 32(1):1-7, 2023.
Article in Chinese | EMBASE | ID: covidwho-2315756

ABSTRACT

3CL protease inhibitors has become the focus of the current research on anti-coronavirus drugs. The analysis of the patent information will help the research and innovation of such anti-coronavirus drugs. This paper analyzes the application trends of anti-coronavirus 3CL protease inhibitor-related patents, the distribution of regional status of patents, important applicants, patented technology themes, progress of key drug development and other factors. We also analyze the development of related patent technologies and aim to help domestic pharmaceutical enterprises carry out innovation and complete the strategic layout.Copyright © 2023 Chinese Journal of New Drugs Co. Ltd.. All rights reserved.

7.
Orbital ; 15(1):49-56, 2023.
Article in English | Scopus | ID: covidwho-2312656

ABSTRACT

In present study, the inhibitory potential of Neolamarckia cadamba phytoconstituents was investigated against SARS-CoV-2 3CL protease (3CL pro) (PDB ID: 6M2N). Molecular docking was analyzed using AutoDock Vina software by setting the grid parameter as X=-33.163, Y=-65.074 and Z= 41.434 with dimensions of the grid box 25 × 25 × 25 Å. Remdesivir was taken as the standard for comparative analysis along with inhibitor 5, 6, 7-trihydroxy-2-phenyl-4H-chromen-4-one. Furthermore, the exploration of 2 D Hydrogen-bond interactions was performed by Biovia Discovery Studio 4.5 program to identify the interactions between an amino acid of target and ligand followed by assessment of physicochemical properties using Lipinski's rule and Swiss ADME database. The decent bonding scores of secondary metabolites owing to hydrogen bonding with catalytic residues suggest the effectiveness of these phytochemicals towards 3CLpro. The results are further consolidated positively by Lipinski's rule and Swiss ADME prediction. Thus reasonably, observations with docking studies suggest possibility of phytochemicals from Neolamarckia cadamba to inhibit the 3CLpro and consequently would be explored further as agents for preventing COVID-19. © 2023, Universidade Federal de Mato Grosso do Sul, Departamento de Quimica. All rights reserved.

8.
Emerg Microbes Infect ; 12(1): 2211688, 2023 Dec.
Article in English | MEDLINE | ID: covidwho-2312953

ABSTRACT

ABSTRACTThe main protease (3-chymotrypsin-like protease, 3CLpro) of SARS-CoV-2 has become a focus of anti-coronavirus research. Despite efforts, drug development targeting 3CLpro has been hampered by limitations in the currently available activity assays. Additionally, the emergence of 3CLpro mutations in circulating SARS-CoV-2 variants has raised concerns about potential resistance. Both emphasize the need for a more reliable, sensitive, and facile 3CLpro assay. Here, we report an orthogonal dual reporter-based gain-of-signal assay for measuring 3CLpro activity in living cells. It builds on the finding that 3CLpro induces cytotoxicity and reporter expression suppression, which can be rescued by its inhibitor or mutation. This assay circumvents most limitations in previously reported assays, especially false positives caused by nonspecific compounds and signal interference from test compounds. It is also convenient and robust for high throughput screening of compounds and comparing the drug susceptibilities of mutants. Using this assay, we screened 1789 compounds, including natural products and protease inhibitors, with 45 compounds that have been reported to inhibit SARS-CoV-2 3CLpro among them. Except for the approved drug PF-07321332, only five of these inhibit 3CLpro in our assays: GC376; PF-00835231; S-217622; Boceprevir; and Z-FA-FMK. The susceptibilities of seven 3CLpro mutants prevalent in circulating variants to PF-07321332, S-217622, and GC376 were also assessed. Three mutants were identified as being less susceptible to PF-07321322 (P132H) and S-217622 (G15S, T21I). This assay should greatly facilitate the development of novel 3CLpro-targeted drugs and the monitoring of the susceptibility of emerging SARS-CoV-2 variants to 3CLpro inhibitors.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Mutation , Peptide Hydrolases , Antiviral Agents/pharmacology
9.
Bioorg Med Chem ; 87: 117316, 2023 05 03.
Article in English | MEDLINE | ID: covidwho-2320928

ABSTRACT

In this paper, a series of peptidomimetic SARS-CoV-2 3CL protease inhibitors with new P2 and P4 positions were synthesized and evaluated. Among these compounds, 1a and 2b exhibited obvious 3CLpro inhibitory activities with IC50 of 18.06 nM and 22.42 nM, respectively. 1a and 2b also showed excellent antiviral activities against SARS-CoV-2 in vitro with EC50 of 313.0 nM and 170.2 nM, respectively, the antiviral activities of 1a and 2b were 2- and 4-fold better than that of nirmatrelvir, respectively. In vitro studies revealed that these two compounds had no significant cytotoxicity. Further metabolic stability tests and pharmacokinetic studies showed that the metabolic stability of 1a and 2b in liver microsomes was significantly improved, and 2b had similar pharmacokinetic parameters to that of nirmatrelvir in mice.


Subject(s)
COVID-19 , Peptidomimetics , Animals , Mice , Protease Inhibitors/pharmacology , Peptidomimetics/pharmacology , SARS-CoV-2 , Nitriles , Antiviral Agents/pharmacology
10.
Chem Pharm Bull (Tokyo) ; 71(5): 360-367, 2023.
Article in English | MEDLINE | ID: covidwho-2317290

ABSTRACT

Computational screening is one of the fundamental techniques in drug discovery. Each compound in a chemical database is bound to the target protein in virtual, and candidate compounds are selected from the binding scores. In this work, we carried out combinational computation of docking simulation to generate binding poses and molecular mechanics calculation to estimate binding scores. The coronavirus infectious disease has spread worldwide, and effective chemotherapy is strongly required. The viral 3-chymotrypsin-like (3CL) protease is a good target of low molecular-weight inhibitors. Hence, computational screening was performed to search for inhibitory compounds acting on the 3CL protease. As a preliminary assessment of the performance of this approach, we used 51 compounds for which inhibitory activity had already been confirmed. Docking simulations and molecular mechanics calculations were performed to evaluate binding scores. The preliminary evaluation suggested that our approach successfully selected the inhibitory compounds identified by the experiments. The same approach was applied to 8820 compounds in a database consisting of approved and investigational chemicals. Hence, docking simulations, molecular mechanics calculations, and re-evaluation of binding scores including solvation effects were performed, and the top 200 poses were selected as candidates for experimental assays. Consequently, 25 compounds were chosen for in vitro measurement of the enzymatic inhibitory activity. From the enzymatic assay, 5 compounds were identified to have inhibitory activities against the 3CL protease. The present work demonstrated the feasibility of a combination of docking simulation and molecular mechanics calculation for practical use in computational virtual screening.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Peptide Hydrolases/metabolism , Protease Inhibitors/chemistry , Viral Nonstructural Proteins , Cysteine Endopeptidases/chemistry , Cysteine Endopeptidases/metabolism , Molecular Dynamics Simulation , Molecular Docking Simulation , Antiviral Agents/pharmacology , Antiviral Agents/chemistry
11.
J Biomol Struct Dyn ; : 1-20, 2022 Mar 09.
Article in English | MEDLINE | ID: covidwho-2317279

ABSTRACT

Coronavirus disease 19 (COVID19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Currently, several countries are at risk of the pandemic caused by this virus. In the absence of any vaccine or virus-specific antiviral treatments, the need is to fast track search for potential drug candidates to combat the virus. Though there are known drugs that are being repurposed to fight against the SARS-CoV-2, there is a requirement for the virus-specific drugs at the earliest. One of the main drug targets of SARS-CoV-2 is an essential non-structural protein, 3CL protease, critical for the life cycle of the virus. We have used molecular docking studies to screen a chemically diverse set of small molecules to identify potential drug candidates to target this protein. Of the 22,630 molecules from varied small molecule libraries, based on the binding affinities and physicochemical properties, we finalized 30 molecules to be potential drug candidates. Eight of these molecules bind in a manner allowing for the scope of a nearly orthogonal backside nucleophilic attack on their suitably placed electrophilic carbonyl groups by the thiol group of cysteine residue 145, while remaining inside a 4 Ǻ distance range. It is interesting since carbonyl groups are known to be attacked in a similar fashion by external nucleophiles and can be relevant when considering these molecules as potential mechanism-based irreversible inhibitors of the 3CLPro. Further, ADMET analysis and Molecular dynamics simulations and available bioactive assays led to the identification of three molecules with high potential to be explored as drug candidates/lead molecules to target 3CLPro of SARS-CoV-2.Communicated by Ramaswamy H. Sarma.

12.
Chinese Journal of New Drugs ; 32(1):1-7, 2023.
Article in Chinese | EMBASE | ID: covidwho-2297220

ABSTRACT

3CL protease inhibitors has become the focus of the current research on anti-coronavirus drugs. The analysis of the patent information will help the research and innovation of such anti-coronavirus drugs. This paper analyzes the application trends of anti-coronavirus 3CL protease inhibitor-related patents, the distribution of regional status of patents, important applicants, patented technology themes, progress of key drug development and other factors. We also analyze the development of related patent technologies and aim to help domestic pharmaceutical enterprises carry out innovation and complete the strategic layout.Copyright © 2023 Chinese Journal of New Drugs Co. Ltd.. All rights reserved.

13.
J Biol Chem ; 299(5): 104697, 2023 05.
Article in English | MEDLINE | ID: covidwho-2300740

ABSTRACT

The processing of the Coronavirus polyproteins pp1a and pp1ab by the main protease Mpro to produce mature proteins is a crucial event in virus replication and a promising target for antiviral drug development. Mpro cleaves polyproteins in a defined order, but how Mpro and/or the polyproteins determine the order of cleavage remains enigmatic due to a lack of structural information about polyprotein-bound Mpro. Here, we present the cryo-EM structures of SARS-CoV-2 Mpro in an apo form and in complex with the nsp7-10 region of the pp1a polyprotein. The complex structure shows that Mpro interacts with only the recognition site residues between nsp9 and nsp10, without any association with the rest of the polyprotein. Comparison between the apo form and polyprotein-bound structures of Mpro highlights the flexible nature of the active site region of Mpro, which allows it to accommodate ten recognition sites found in the polyprotein. These observations suggest that the role of Mpro in selecting a preferred cleavage site is limited and underscores the roles of the structure, conformation, and/or dynamics of the polyproteins in determining the sequence of polyprotein cleavage by Mpro.


Subject(s)
Coronavirus 3C Proteases , Polyproteins , Proteolysis , SARS-CoV-2 , Humans , Polyproteins/metabolism , SARS-CoV-2/metabolism , Coronavirus 3C Proteases/metabolism
14.
Eur J Med Chem ; 254: 115376, 2023 Jun 05.
Article in English | MEDLINE | ID: covidwho-2293855

ABSTRACT

The high morbidity and mortality associated with SARS-CoV-2 infection, the etiological agent of COVID-19, has had a major impact on global public health. Significant progress has been made in the development of an array of vaccines and biologics, however, the emergence of SARS-CoV-2 variants and breakthrough infections are an ongoing major concern. Furthermore, there is an existing paucity of small-molecule host and virus-directed therapeutics and prophylactics that can be used to counter the spread of SARS-CoV-2, and any emerging and re-emerging coronaviruses. We describe herein our efforts to address this urgent need by focusing on the structure-guided design of potent broad-spectrum inhibitors of SARS-CoV-2 3C-like protease (3CLpro or Main protease), an enzyme essential for viral replication. The inhibitors exploit the directional effects associated with the presence of a gem-dimethyl group that allow the inhibitors to optimally interact with the S4 subsite of the enzyme. Several compounds were found to potently inhibit SARS-CoV-2 and MERS-CoV 3CL proteases in biochemical and cell-based assays. Specifically, the EC50 values of aldehyde 1c and its corresponding bisulfite adduct 1d against SARS-CoV-2 were found to be 12 and 10 nM, respectively, and their CC50 values were >50 µM. Furthermore, deuteration of these compounds yielded compounds 2c/2d with EC50 values 11 and 12 nM, respectively. Replacement of the aldehyde warhead with a nitrile (CN) or an α-ketoamide warhead or its corresponding bisulfite adduct yielded compounds 1g, 1eand1f with EC50 values 60, 50 and 70 nM, respectively. High-resolution cocrystal structures have identified the structural determinants associated with the binding of the inhibitors to the active site of the enzyme and, furthermore, have illuminated the mechanism of action of the inhibitors. Overall, the high Safety Index (SI) (SI=CC50/EC50) displayed by these compounds suggests that they are well-suited to conducting further preclinical studies.


Subject(s)
COVID-19 , Hepatitis C, Chronic , Middle East Respiratory Syndrome Coronavirus , Humans , SARS-CoV-2/metabolism , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Peptide Hydrolases , Protease Inhibitors/pharmacology , Protease Inhibitors/chemistry , Cysteine Endopeptidases/metabolism
15.
J Biomol Struct Dyn ; : 1-15, 2021 Dec 08.
Article in English | MEDLINE | ID: covidwho-2255996

ABSTRACT

The 3CL Protease of severe acute respiratory syndrome coronavirus (SARS-CoV), responsible for viral replication, has emerged as an essential target for designing anti-coronaviral inhibitors in drug discovery. In recent years, small molecule and peptidomimetic inhibitors have been used to target the inhibition of SARS-CoV 3CL Protease. In this study, we have developed 2D and 3D Quantitative structure activity relationship (QSAR) models on 3CL protease inhibitors with good predictive capability to propose inhibitors with improved affinities. Based on the 3 D contour maps, three new inhibitors were designed in silico, which were further subjected to molecular docking to explore their binding modes. The newly designed compounds showed improved interaction energies toward SARS-CoV-3CLPro due to additional interactions with the active site residues. The molecular docking studies of the most potent compounds revealed specific interactions with Glu 166 and Cys 145. Furthermore, absorption, distribution, metabolism, elimination (ADME) and drug-likeness evaluation revealed improved pharmacokinetic properties for these compounds. The molecular dynamics simulations confirmed the stability of the interactions identified by docking. The results presented would guide the development of new 3CL protease inhibitors with improved affinities in the future.Communicated by Ramaswamy H. Sarma.

16.
Journal of Pharmaceutical Negative Results ; 13(3):865-868, 2022.
Article in English | EMBASE | ID: covidwho-2279142

ABSTRACT

SARS COV2 is one of the most destructive pandemics the world has faced and led to extreme economic losses. For its clinical therapy, SARS-COV-2 3CL Protease (3CLpro) is considered a target because of its crucial role in replication. Inhibition of this 3CLpro can lead to a decrease in viral load and infection. Different studies used various compounds and tested their inhibiting activity. Among them, flavonoids, serine derivatives, Chalcones, and alpha-keto amides were proven to have inhibitory effects. Many in-vitro tests were done to check the binding and inhibition abilities of such compounds. In vivo, some studies are done, but more is needed to prove this discovery. As far as research is concerned, therapeutic drugs against COVID-19 can be made by using such inhibitors. More in vivo studies and animal model experimentation should be done to confirm the findings.Copyright © 2022 Wolters Kluwer Medknow Publications. All rights reserved.

17.
J Med Virol ; 95(3): e28618, 2023 03.
Article in English | MEDLINE | ID: covidwho-2268193

ABSTRACT

Coronaviruses target ciliate cells causing the loss of cilia, acute rhinorrheas, and other ciliopathies. The loss of ciliary function may help the virus infect, replicate, and spread. However, the molecular mechanisms by which coronaviruses cause ciliary defects are still unclear. Herein we demonstrate how coronavirus infection and severe acute respiratory syndrome coronavirus2 3CL protease induce cilia dysfunction by targeting a host protein septin that is required for the structure and function of cilia. Further, we demonstrate that coronaviruses and 3CL protease lead to the cleavage of several septin proteins (SEPT2, -6, and -9), producing cleaved obstructive fragments. Furthermore, ectopic expression of cleaved SEPT2 fragments shows defective ciliogenesis, disoriented septin filaments, and ablated Sonic Hedgehog (SHH) signaling in a protease activity-dependent manner. We present that the 3CLpro inhibitors are potent and prevent abnormal ciliary structures and SHH signaling. These results provide useful insights into the general mechanisms underlying ciliary defects caused by coronaviruses, which, in turn, facilitate virus spread and prove that preclinical and clinical 3CL protease inhibitors may prove useful as therapeutics for treating ciliary defects of coronaviruses.


Subject(s)
COVID-19 , Septins , Humans , Septins/genetics , Septins/metabolism , Hedgehog Proteins/metabolism , Peptide Hydrolases/metabolism , Signal Transduction , Endopeptidases/metabolism , Protease Inhibitors/therapeutic use
18.
Biomed Pharmacother ; 161: 114481, 2023 May.
Article in English | MEDLINE | ID: covidwho-2254896

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection continues to pose threats to public health. The clinical manifestations of lung pathology in COVID-19 patients include sustained inflammation and pulmonary fibrosis. The macrocyclic diterpenoid ovatodiolide (OVA) has been reported to have anti-inflammatory, anti-cancer, anti-allergic, and analgesic activities. Here, we investigated the pharmacological mechanism of OVA in suppressing SARS-CoV-2 infection and pulmonary fibrosis in vitro and in vivo. Our results revealed that OVA was an effective SARS-CoV-2 3CLpro inhibitor and showed remarkable inhibitory activity against SARS-CoV-2 infection. On the other hand, OVA ameliorated pulmonary fibrosis in bleomycin (BLM)-induced mice, reducing inflammatory cell infiltration and collagen deposition in the lung. OVA decreased the levels of pulmonary hydroxyproline and myeloperoxidase, as well as lung and serum TNF-ɑ, IL-1ß, IL-6, and TGF-ß in BLM-induced pulmonary fibrotic mice. Meanwhile, OVA reduced the migration and fibroblast-to-myofibroblast conversion of TGF-ß1-induced fibrotic human lung fibroblasts. Consistently, OVA downregulated TGF-ß/TßRs signaling. In computational analysis, OVA resembles the chemical structures of the kinase inhibitors TßRI and TßRII and was shown to interact with the key pharmacophores and putative ATP-binding domains of TßRI and TßRII, showing the potential of OVA as an inhibitor of TßRI and TßRII kinase. In conclusion, the dual function of OVA highlights its potential for not only fighting SARS-CoV-2 infection but also managing injury-induced pulmonary fibrosis.


Subject(s)
COVID-19 , Diterpenes , Pulmonary Fibrosis , Humans , Mice , Animals , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/drug therapy , Pulmonary Fibrosis/metabolism , SARS-CoV-2/metabolism , COVID-19/metabolism , Lung , Diterpenes/adverse effects , Bleomycin/pharmacology , Transforming Growth Factor beta/metabolism , Transforming Growth Factor beta1/metabolism , Fibroblasts , Signal Transduction
19.
Adv Sci (Weinh) ; 10(13): e2207098, 2023 05.
Article in English | MEDLINE | ID: covidwho-2283513

ABSTRACT

Antivirals that can combat coronaviruses, including SARS-CoV-2 and associated mutants, are urgently needed but lacking. Simultaneously targeting the viral physical structure and replication cycle can endow antivirals with sustainable and broad-spectrum anti-coronavirus efficacy, which is difficult to achieve using a single small-molecule antiviral. Thus, a library of nanomaterials on GX_P2V, a SARS-CoV-2-like coronavirus of pangolin origin, is screened and a surface-functionalized gold nanocluster (TMA-GNC) is identified as the top hit. TMA-GNC inhibits transcription- and replication-competent SARS-CoV-2 virus-like particles and all tested pseudoviruses of SARS-CoV-2 variants. TMA-GNC prevents viral dissemination through destroying membrane integrity physically to enable a virucidal effect, interfering with viral replication by inactivating 3CL protease and priming the innate immune system against coronavirus infection. TMA-GNC exhibits biocompatibility and significantly reduces viral titers, inflammation, and pathological injury in lungs and tracheas of GX_P2V-infected hamsters. TMA-GNC may have a role in controlling the COVID-19 pandemic and inhibiting future emerging coronaviruses or variants.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Peptide Hydrolases , Pandemics , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Antiviral Agents/chemistry , Endopeptidases
20.
Eur J Med Chem ; 250: 115186, 2023 Mar 15.
Article in English | MEDLINE | ID: covidwho-2253021

ABSTRACT

Since end of 2019, the global and unprecedented outbreak caused by the coronavirus SARS-CoV-2 led to dramatic numbers of infections and deaths worldwide. SARS-CoV-2 produces two large viral polyproteins which are cleaved by two cysteine proteases encoded by the virus, the 3CL protease (3CLpro) and the papain-like protease, to generate non-structural proteins essential for the virus life cycle. Both proteases are recognized as promising drug targets for the development of anti-coronavirus chemotherapy. Aiming at identifying broad spectrum agents for the treatment of COVID-19 but also to fight emergent coronaviruses, we focused on 3CLpro that is well conserved within this viral family. Here we present a high-throughput screening of more than 89,000 small molecules that led to the identification of a new chemotype, potent inhibitor of the SARS-CoV-2 3CLpro. The mechanism of inhibition, the interaction with the protease using NMR and X-Ray, the specificity against host cysteine proteases and promising antiviral properties in cells are reported.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/metabolism , Peptide Hydrolases , Cysteine Endopeptidases/metabolism , Protease Inhibitors/chemistry , Coronavirus 3C Proteases , Antiviral Agents/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL